数学考研心得体会优质8篇

时间:
betray
分享
下载本文

心得体会是自己在成长和进步中的突破和进展,为自己的未来充满信心,为了加强自身的写作水平,我们需要认真记录体会,下面是顺风文档网小编为您分享的数学考研心得体会优质8篇,感谢您的参阅。

数学考研心得体会优质8篇

数学考研心得体会篇1

计划是死的,人是活的。由于当时这样那样的原因,我看完第一遍复习全书已经到了十一月初,这个又加入政治和专业课复习。之前我的美好计划肯定是实现不了,我就稍稍改变了一下,在进行第二遍复习全书的时候,我只看了知识总结和典型的几个例题,全书的课后习题我只在暑假做了三章,之后的我一道都没做(这个不要学我,最后是自己都能做一遍),同时这个时候,我又加入了暑假就买的660题,惭愧!当作是对知识点的熟悉和巩固,这样我差不多用了不到20天把知识点看了第二遍,同时基本上完成了660的题目(个人感觉这本书非常好,推荐一下)。

要有毅力和勇气

在做数学的过程受的打击是最多的,一定要坚持住。首先,每天都要做一点数学题,这个东西很忌讳手生和思维的间隔。其次,在遇到困难的时候要坚持住,这个我主要体现在做李永乐经典400题上。我在完成第二遍复习的时候,就着手做400题,总共十套,我给自己订的计划是10天完成,我满怀信心的开始,结果从一套道最后一套把我打击的彻彻底底一塌糊涂,平均也就100分,最低的有80多,最好的也就110多,这个时候看到网上的400题各种130+,我直接趋于崩溃。

但我觉得我难能可贵的是我还是迎难而上,十天把十套题做完了,每天晚上从六点道十一点,我都在做这个,然后总结,消化,吸收。最后,当你遇到困难和挫折的时候一定要保持信心和冷静的头脑,并能够及时采取策略。在十二月份的时候我开始做真题。我总共做了大概十二套的真题,感觉不错,信心有点膨胀。后来一月份在做合工大5套题的时候又是把我打击一番,我只做了三套就做不下去了,有尝试了做以前做过的题还有做错的和不会的,这时候距离考试只有5、6天了,于是我决定放弃合工大和一切模拟题,把最近的两年真题在规定的时间内又重新做了一遍,都能在140以上,信心才慢慢回来。

数学题要做不能只是看

尤其是在做套题的时候。我在做模拟试卷和真题的时候,专门找了一个本子,从十一月中下旬开始雷打不动每天固定三小时,把一份试卷从头做到尾,大题每一题都认真写出过程并算出最后结果,期间过程,不管遇到什么不会的,我都不看答案或是去翻书,三个小时结束后也不管自己做的怎么样立即停笔,然后进行批改分析和总结。我觉的在没人监督的情况下,通过这种方式对于模拟考场环境和处理问题是很有好处的。

考试是要淡定

在考试的时候,说不紧张那是骗人的,但需要把紧张控制在一定的程度内。我由于第一天英语自我感觉非常不好,导致一夜没睡着,第二天早上喝了两瓶红牛就去考了。非常紧张,第一道题就让我非常棘手,5分钟后没有点头绪,于是放弃,后来概率两道题也让我不知所措,过了半个多小时,我还是有三道选择题没做。我深呼吸了一下,等了一分多钟才开始做填空题,好在填空题还是中规中距的,大题除了二重积分那倒比较有新意外,其他的也都是传统的题目,一路跌跌撞撞,但也没遇到什么大坎,做完后还剩20分钟。开始集中解决三道选择题,我通过各种方法,试凑,举例,分析,综合,蒙猜,总算在规定的时间内做完了,第一道选择题我是二蒙一,事实证明我是幸运的。

数学考研心得体会篇2

高等数学是我院财务管理、工程管理、国际贸易、商管等相关专业的基础课,主要讲述了一元函数与多元函数的微积分学,针对不同专业的实际情况,结合“双考大纲”,高等数学又分为《高等数学a》、《高等数学b》、《高等数学c》,充分掌握高等数学的基本知识,对今后专业课的学习,继续深造,从事金融行业、建筑行业以及个人的逻辑思维等方面有很多大帮助。但是这门课程具有高度的抽象性、严密的逻辑性和广泛的应用性,知识一环扣一环,结构既有严密的内在联系同时又呈曲线跳跃式发展,对于各高校的学生来说,都是一门难学的课程。因此,在教学过程当中,尽可能的采取灵活多样的教学方法,让学生充分的理解、掌握所学知识。作为一名新入职的教师,一方面很是感激校方对于我的信任,另一方面也深知作为年轻老师教学经验还有待进一步提高,但是我在西北大学现代学院这仅仅半年时间就让我受益匪浅,在这里谈一下自己的感受:

首先要认真备课,仔细撰写教案,上课时要说课,这节课大家需要掌握什么(教学大纲的要求,考试要考的知识),重点、难点是什么,使学生清楚这节课堂目的,做到有的放矢,同时还要时而去走进其他老师的课堂,认真听听他们的讲课,向有经验的教师学习,反思自己的教学过程并不断完善自己的教案和教学方法。对于教案的.认真撰写须不断地向其他优秀老师学习,这样才会不断地完善自己的教学,提高自己的能力。

其次,上课要突出重点,做到张弛有度,结合我院学生的特点,尽量用简单通俗的语言,图形描述讲解抽象的定理,推论等,比如在讲解定积分及其性质、多元函数求导运算。具体到知识点的时候,重点是在分析,考察哪个知识点,要我们做什么,完成这个工作,需要几个步骤,每个步骤的工作又是什么,跟学生讲明白,体现层次感,每堂课对于一个知识点,至少一道题目要有完整的板书,便于学生做笔记,模仿,要及时讲解作业,多与学生交流,了解学生,深入到学生中去。

再次,教会学生学习的方发:听课要学会“抓大放小”,抓住主要思路,主要思想,主要的脉路,不要在小问题上纠缠,课后自己动手去解决,实在不懂再问老师、同学,因为高数的技巧性很强,这样也提高了学生学习的兴趣。另外,上课的内容要有所拓展,在难度上要照顾想考研的学生,这些跟学生说清楚。

最后,就是基本素质,所谓“学高为师,身正为范”,教师的言行举止也在潜移默化中影响着学生。因此,我们要着装大方得体、讲课的语速要适中,提前几分钟到教室,上课带教案、教材、教学手册,尊重学生,所言所行符合高校教师职业道德。

高等数学这门课程本质上决定了它的枯燥无味,在教学过程中,要不断摸索,总结,依靠课堂魅力去感染学生,影响学生,让学生喜欢这门课程。

数学考研心得体会篇3

随着近年来“考研热”的持续升温,已有越来越多的“落榜生”选择二次或者多次考研。考生选择再战考研之前,一定要对自己的情况做综合分析,并不是所有考生都适合二次或者多次考研。一般情况下,有三种考生是适合考研的:

第一,自身所学专业限制性很强、就业面很窄、本科学校竞争力很弱的考生,这类考生亟须通过考研来增加求职竞争筹码;

第二,不着急就业、想继续深造,但因为语言或者经济等原因,只能选择在国内读研的考生;

第三,名校情结非常浓重、而且自我约束力比较强的考生。

考生有过一次考研失败的经历后,往往再次考研时目的性非常明确,但是这并不是决定考研成功的最关键因素,因此,如何提高成绩最为必要。

对于这类考生,建议复习时不妨分为五个阶段:第一阶段做基础知识回顾;第二三阶段强化训练;第四阶段系统复习;第五阶段冲刺补考。当然,考生要根据个人情况安排适合自己的复习时间段。小编提醒大家,调剂成功的同学不在失利考生范围内,最全的调剂攻略戳。

考研落榜步入职场

有机构曾对大学生毕业后的流向做了一个统计,其中94%以上毕业后会进入商界、3%左右会进入政界、2%左右会在学术界发展,最后成为国家科学研究与创造前沿的学者。因此,对于考研失利的考生来说,大部分都会转入职场。

在求职大军中,考研失利的学生占了很大一部分比例。一些学生在经历过考研失利的“重创”后,甚至会在求职中表现出一些不自信。作为成年人,不要被这点失败给吓蒙了,要知道,你的职业生涯还没开始呢,比考研失利更大的挫折可能还在后头。

应届生在求职时,既不能失去自信,又不能失去客观、理性。应届生求职时应合理展现自己的价值,即使有些预期短时间内难以达到,也完全可以通过科学的职业规划一步步实现。

很多企业对考研失利的学生并不排斥,求职者如果能把考研坚持下来了,说明其有一定的恒心和毅力,这也是他们非常看重的。

数学考研心得体会篇4

利用微分中值定理:微分中值定理在高数的证明题中是非常大的,在等式和不等式的证明中都会用到。当不等式或其适当变形中有函数值之差时,一般可考虑用拉格朗日中值定理证明。柯西中值定理是拉格朗日中值定理的一个推广,当不等式或其适当变形中有两个函数在两点的函数值之差的比值时,可考虑用柯西中值定理证明。

利用定积分中值定理:该定理是在处理含有定积分的不等式证明中经常要用到的理论,一般只要求被积函数具有连续性即可。基本思路是通过定积分中值定理消去不等式中的积分号,从而与其他项作大小的比较,进而得出证明。

除此之外,最常用的方法是左右两边相减构造辅助函数,若函数的最小值为0或为常数,则该函数就是大于零的,从而不等式得以证明。

考研数学复习建议

一、打牢基础

“懂”,首先要求同学们对考研数学的形式、考研大纲及考研用书进行全面的分析与深入的了解。这个阶段,要求同学们全身心进行基础阶段的复习。这个阶段同学们一定要认真细致学习课本基本知识点,弄熟定义、公式、定理及相关习题。只有打牢基础,才能决胜千里。最后,要求同学们做好规划,合理安排复习,做好经常性的总结与归纳。

二、踏实前行

数学不像英语和政治科目,能通过一定的背诵、记忆,就能取得可观的成绩。数学必须通过大量的练习,才能得到巩固。不盲目地搞题海战术,要有计划、有针对性地做题,才能将知识领悟得透彻。强化阶段,同学们一定要利用好复习资料,做题的过程中,重点积累技巧与方法,吃透数学的知识点与题型。

三、总结归纳

经过前期基础知识的积累和做题的巩固,同学们对知识点、练习题、真题都有了深刻的认识。这时,要做好归纳与总结,构建整体的知识结构体系,将之前所学的知识点牢牢记忆在脑海中。充分利用知识的迁移,达到举一反三的效果。遇到一些重点和难点题型,首先不畏惧,其次回顾之前学习的相关知识,并有效利用它们,来解决遇到的问题,最后将以往所学深深记忆在脑海中,达到“化”的境界。

考研数学复习历年考的最多的知识点

1、两个重要极限,未定式的极限、等价无穷小代换

这些小的知识点在历年的考察中都比较高。而透过我们分析,假如考极限的话,主要考的是洛必达法则加等价无穷小代换,特别针对数三的同学,这儿可能出大题。

2、处理连续性,可导性和可微性的关系

要求掌握各种函数的求导方法。比如隐函数求导,参数方程求导等等这一类的,还有注意一元函数的应用问题,这也是历年考试的一个重点。数三的同学这儿结合经济类的一些试题进行考察。

3、微分方程:一是一元线性微分方程,第二是二阶常系数齐次/非齐次线性微分方程

对第一部分,考生需要掌握九种小类型,针对每一种小类型有不同的解题方式,针对每个不同的方程,套用不同的公式就行了。对于二阶常系数线性微分方程大家一定要理解解的结构。另一块对于非齐次的方程来说,考生要注意它和特征方程的联系,有齐次为方程可以求它的通解,当然给出的通解大家也要写出它的特征方程,这个变化是咱们这几年的一个趋势。这一类问题就是逆问题。

对于二阶常系数非齐次的线性方程大家要分类掌握。当然,这一块对于数三的同学来说,还有一个差分方程的问题,差分方程不作为咱们的一个重点,而且提醒大家一下,学习的时候要注意,差分方程的解题方式和微方程是相似的,学习的时候要注意这一点。

4、级数问题,主要针对数一和数三

这部分的重点是:一、常数项级数的性质,包括敛散性;二、牵扯到幂级数,大家要熟练掌握幂级数的收敛区间的计算,收敛半径与和函数,幂级数展开的`问题,要掌握一个熟练的方法来进行计算。对于幂级数求和函数它可能直接给咱们一个幂级数求它的和函数或者给出一个常数项级数让咱们求它的和,要转化成适当的幂级数来进行求和。

5、一维随机变量函数的分布

这个要重点掌握连续性变量的这一块。这里面有个难点,一维随机变量函数这是一个难点,求一元随机变量函数的分布有两种方式,一个是分布函数法,这是最基本要掌握的。另外是公式法,公式法相对比较便捷,但是应用范围有一定的局限性。

6、随机变量的数字特征

要记住一维随机变量的数字特征都要记熟,数字特征很少单独性考察,往往和前面的一维随机变量函数和多维随机变量函数和第六章的数理统计结合进行考察。特别针对数一的同学来说,考察矩估计和最大似然估计的时候会考察无偏性。

7、参数估计

这一点是咱们经常出大题的地方,这一块对咱们数一,数二,数三的考生来讲,包含两块知识点,一个是矩估计,一个是最大似然估计,这两个集中出大题。

数学考研心得体会篇5

考研数学基础差考生暑期复习建议

1、函数、极限与连续。主要考查极限的计算或已知极限确定原式中的常数、讨论函数连续性和判断间断点类型、无穷小阶的比较、讨论连续函数在给定区间上零点的个数或确定方程在给定区间上有无实根。求分段函数的复合函数;求极限或已知极限确定原式中的常数;讨论函数的连续性,判断间断点的类型;无穷小阶的比较;讨论连续函数在给定区间上零点的个数,或确定方程在给定区间上有无实根。这一部分更多的会以选择题,填空题,或者作为构成大题的一个部件来考核,关键是要对这些概念有本质的理解,在此基础上找习题强化。

2、一元函数微分学。主要考查导数与微分的定义、各种函数导数与微分的计算、利用洛比达法则求不定式极限、函数极值、方程的的个数、证明函数不等式、与中值定理相关的证明、最大值、最小值在物理、经济等方面实际应用、用导数研究函数性态和描绘函数图形、求曲线渐近线。求给定函数的导数与微分(包括高阶导数),隐函数和由参数方程所确定的函数求导,特别是分段函数和带有绝对值的函数可导性的讨论;利用洛比达法则求不定式极限;讨论函数极值,方程的根,证明函数不等式;利用罗尔定理、拉格朗日中值定理、柯西中值定理和泰勒中值定理证明有关命题,此类问题证明经常需要构造辅助函数;几何、物理、经济等方面的最大值、最小值应用问题,解这类问题,主要是确定目标函数和约束条件,判定所讨论区间;利用导数研究函数性态和描绘函数图形,求曲线渐近线。

3、一元函数积分学。主要考查不定积分、定积分及广义积分的计算、变上限积分的求导、极限等、积分中值定理和积分性质的证明、定积分的应用,如计算旋转面面积、旋转体体积、变力作功等计算题:计算不定积分、定积分及广义积分;关于变上限积分的题:如求导、求极限等;有关积分中值定理和积分性质的证明题;定积分应用题:计算面积,旋转体体积,平面曲线弧长,旋转面面积,压力,引力,变力作功等;综合性试题。这一部分主要以计算应用题出现,只需多加练习即可。

4、向量代数和空间解析几何。计算题:求向量的数量积,向量积及混合积;求直线方程,平面方程;判定平面与直线间平行、垂直的关系,求夹角;建立旋转面的方程;与多元函数微分学在几何上的应用或与线性代数相关联的题目。这一部分的难度在考研数学中应该是相对简单的,找辅导书上的习题练习,需要做到快速正确的求解。

5、多元函数的微分学。主要考查偏导数存在、可微、连续的判断、多元函数和隐函数的一阶、二阶偏导数、多元函数极值或条件极值在与经济上的应用、二元连续函数在有界平面区域上的最大值和最小值。此外,数学一还要求会计算方向导数、梯度、曲线的切线与法平面、曲面的切平面与法线判定一个二元函数在一点是否连续,偏导数是否存在、是否可微,偏导数是否连续;求多元函数(特别是含有抽象函数)的一阶、二阶偏导数,求隐函数的一阶、二阶偏导数;求二元、三元函数的方向导数和梯度;求曲面的切平面和法线,求空间曲线的切线与法平面,该类型题是多元函数的微分学与前面向量代数与空间解析几何的综合题,应结合起来复习;多元函数的极值或条件极值在几何、物理与经济上的应用题;求一个二元连续函数在一个有界平面区域上的最大值和最小值。这部分应用题多要用到其他领域的知识,在复习时要引起注意,可以找一些题目做做,找找这类题目的感觉。

6、多元函数的积分学。包括二重积分在各种坐标下的计算,累次积分交换次序。数一还要求掌握三重积分,曲线积分和曲面积分以及相关的重要公式。二重、三重积分在各种坐标下的计算,累次积分交换次序;第一型曲线积分、曲面积分计算;第二型(对坐标)曲线积分的计算,格林公式,斯托克斯公式及其应用;第二型(对坐标)曲面积分的计算,高斯公式及其应用;梯度、散度、旋度的综合计算;重积分,线面积分应用;求面积,体积,重量,重心,引力,变力作功等。

7、微分方程。主要考查一阶微分方程的通解或特解、二阶线性常系数齐次和非齐次方程的特解或通解、微分方程的建立与求解。差分方程的基本概念与一介常系数线形方程求解方法。求典型类型的一阶微分方程的通解或特解:这类问题首先是判别方程类型,求线性常系数齐次和非齐次方程的特解或通解;根据实际问题或给定的条件建立微分方程并求解;综合题,常见的`是以下内容的综合:变上限定积分,变积分域的重积分,线积分与路径无关,全微分的充要条件,偏导数等。

考研数学知识点解读

现在这个阶段,我们的一阶高等数学已经结束了,而关于空间向量与解析几何的相关知识是考研中数一独有的部分,这一部分边角知识也是要求我们同学们掌握的。

建立平面方程、建立直线方程、研究平面与直线间的关系、建立旋转曲面方程、求曲面的切平面方程、求曲线的切线方程等,这些知识点再考研当中大多以填空和选择的形式出现,题目难度中等偏难。

上世纪90年代就考过平面方程和直线与平面的关系的题目,90年考的是求过一定点和一定直线垂直的平面方程,96年考的是过原点和定点以及一定平面相垂直的平面方程,都是以填空题的形式出现的,是利用的是平面的点法式方程来解决的,93年考的是一道选择题,考察的是直线与平面的关系。到了新世纪,在06年的时候考了一道关于点到平面距离以及建立曲面的切平面方程的题目。这些题都是以填空和选择的形式出现的,由于这一块知识点,我们大部分考数一的同学不是很熟悉,也不是很重视,因此,当我们在考试中碰到这种题目时会不自主害怕,以至于会有种感觉很难的错觉。其实对于这一部分问题,同学们只要把空间曲面曲线以及直线和平面的相关方程的知识掌握了,也就会做了,而关于这一部分比较难的部分应该是求旋转曲面方程的问题,关于求旋转曲面方程的问题,同学们一定要掌握求其方程,然后再练几道题就可以了。

空间向量和解析几何是数学一单考的内容,希望数学一的同学能够好好把有关这一章节的所以知识点都要熟悉。希望同学们继续努力,考研,我们是认真的,加油!

考研数学线性代数复习重点

认真分析考试大纲,抓住考试重点

考试大纲是最重要的备考资料,从历年的数学大纲来看,每年基本上不变,所以同学们可以先参考20xx年考研数学大纲,将大纲中要求的考点仔细梳理一下,一定要明确重点,不要在不太重要的内容和复杂的题目上投入太多精力。而对于线性代数的重点考查对象一定要重视,例如,线性方程组的求解基本上每年都会以解答题的形式考查,矩阵的特征值、特征向量以及化成对角矩阵是考试频率最高的,也是较难的一类题目,这类问题的关键,所以平时复习要加强这类题型的训练。另外,围绕向量的秩的考查也是考试的重点,大家在复习过程中一定要深刻理解它们的性质。

加强对基本概念、基本性质的理解

从历年试题看,线性代数主要考查考生对基本概念、性质的深入理解以及分析解决问题的能力,需要考生能够做到灵活地运用所学的知识,熟记一些解题方法去解决线性代数问题。所以大家在复习过程中要准确理解线性代数的基本概念,基本性质,为了深刻记忆,同学们可以结合一些例题和练习题来训练,只要概念和方法理解准确到位,多做些相关题目,考试时碰到类似题目就一定能够轻松正确解答。基础知识的复习主要是在基础阶段进行,也就是今年暑期之前,要特别指出的是在基础阶段的复习中,不要轻视对教材中一般习题的练习,一定要配合各章节内容做一定数量的习题,总结一般题型的解题方法与思路。在此过程中,不要过多地去追求复杂的题,要脚踏实地、全面仔细地复习,凡是考纲上有的内容,就不要遗漏。这个阶段虽然涉及综合性、提高性题型不多,但基础打得好将为下阶段全面综合复习创造一个有利前提,而且,试卷中多数综合性、灵活性强的考题,其关键之处也在于考生是否能够适当运用有关的基本概念、性质和方法。

重视真题的训练

真题是最具有代表性的资料,因为线性代数考试内容和技巧比较单一,变化相对少,所以在考研真题题型中的重复率可以达到90%,因此我们要加强对历年真题的重视,尤其是近十五年的真题,总体来讲,做真题可以分两步。第一步,做套题,这样一是可以检验复习的水平,发现概念和内容上不熟悉的地方,另外为真正的考试积累经验。第二步,按照章节分类解析,在第一步基础上,有些题目有可能会做错,把它们记下来,在进行各个章节专题训练时强化知识和方法。最后,把近十五年的真题再研究一下,弄清楚常考的是哪些内容,把考试题型彻底熟悉,并且要会正确解答。一定不要过多的花时间去理解其它无关或者非重点内容。

回顾知识点,进行适当的模拟“实战”

最后冲刺阶段,需要回归教材,把课本再认真梳理一遍,查遗补漏,将知识明确化、系统化。另外,可以做几套模拟试卷。从知识点到做题思路,解题技巧,答题顺序等各个方面进行强化训练,千万不要做太难太偏的模拟题,不然会做无用功,甚至对考试失去信心,也起不到“实战”的价值。考前两天将重要公式回顾一遍。通过完整的复习,形成最终的竞争力,考出最好的成绩。

数学考研心得体会篇6

一、考研数学复习中出现的问题:

数学经过前一个阶段的强化复习,对各个知识点都有了大概的了解,但由于知识点分散、涉及面广而多,学员们通常是看到哪,前面部分又忘光。大部分知识点还很生疏,没有形成完整的系统。只能是做题较多的部分,印象会深刻些。由于我们在基础阶段的学习中,难以将所学数学知识系统化,导致当一门课程复习结束后,另一门课程的大部分知识被遗忘。这些情况都是在该阶段复习数学中会出现的普遍性问题。既然无法逃避,就正面解决。既然没办法全记住,就各个击破。我们在强化阶段要做的就是把这些知识点通过做题、改题、总结的形式巩固起来。

二、考研数学复习时间安排

这段时间可能不如暑假那么富足集中,但要坚信时间是挤出来的,要在有限的时间内创造更多的价值,那就必须要制定合理的时间安排表。建议每天保持三至四个小时的数学学习时间,对于具体学习时间安排在何时,同学们可以自由决定,但学习时间必须得到保证。将时间安排在上午或者晚上,因为上午精神旺盛,思维敏捷,在这段时间内,学习数学将取得很好的效果,同时晚上对所学知识进行回顾训练,进一步强化记忆,使得对知识的掌握更加牢固。数学的复习是一项长期工程,关键在于恒心和坚持,只有如此,才能取得最后的成功,因此,希望你能严格要求自己,能够保证每天都完成相应的学习任务。

在本阶段,由于政治的学习时间要增加,你可能会觉得无法均衡花在各科上的时间。但请注意数学在满分500分中的比重大,所谓“得数学者,得天下”,无论时间多么紧张,一定要保证每天3—4小时复习数学。每一轮复习保证这样一个进度:高等数学用20天时间看完,线性代数用7天,概率论用7天。

数学做题的具体要求是:求稳而不求多、不求快,力争做到做完此阶段应该做完的题,对每个题的知识点和相应的题型都有一定掌握,要多思考,做到举一反三。由于每个同学的复习情况不完全一样,但是要提醒你的是数学复习一定要养成一个好的习惯,拿到的数学题一定要有始有终把它算出来,这是一种计算能力的训练。

近几年考研数学的一个命题趋势是:难题偏题怪题没有了,取而代之的是基础题型,至少占有60%,中档题占30%,难题大约占有10%,而对于中档题或者较难题,如果对知识点掌握扎实熟练的话,那么难题在此也不是很难了。所以现阶段仍是要抓基础,巩固基础,争取在强化阶段有所突破。

数学考研心得体会篇7

还有一个月的时间就要开学了,现在时不时想起去年复习考研的那段日子,感觉好像是昨天刚刚经历过。这不是因为它给我的心中留下了任何“痛苦”的回忆,相反的,复习考研的过程已经为我心中留下了一块珍贵的宝藏,并将让我一生受益无穷。

我之所以决定报考北京大学数学科学学院,基础数学专业的硕士研究生,主要是出于对于这个专业的兴趣和热情。本想本科毕业之后就工作,以后就可以自己养活自己,不让父母为我像以前那样操心了。但做了一段时间的程序员之后,感觉这项工作并不适合我,我不能像许多it工作者那样充满热情地长时间面对着电脑屏幕编写一行行的程序。我开始愈加怀念本科时学数学的生活,怀念和一群同样对于数学充满热情的同学讨论问题的日子。经过认真的自我分析之后,我决定继续追求自己的理想,踏上了考研的征程。

工欲善其事,必先利其器,首先要做的当然是收集考研的相关信息和复习资料。我那些天在北大研究生院的.网页、北大未名bbs和一些考研相关的网站上得到了许多有价值的信息,让我在短时间内对考研有了许多了解,也大体上安排好了复习的时间表。事实上,在整个复习考研过程中我都很关注最新的资料和信息的收集整理,随时调整自己的复习计划,毕竟“闭门造车”的方法往往是事倍功半的,面对考研这种需要耗费大量心力的“工程”就更不可取了。

接下来就是一步一个脚印的复习了,但是复习考研的风格可不像期末考试前突击的那几天一样,它需要的时间少则几个月,多则一年,所以一个适合自己的复习计划是必不可少的。由于我本科时读的就是数学,在专业课上的复习压力相对小些,所以我选择在最后两个多月在家里全力复习备考,之前的几个月在业余时间以看书浏览各科知识点为主,偶尔做做题。

有了计划,更关键的是严格执行它。其实这个道理大家都明白,但俗话说:计划赶不上变化。今天可能你最要好的同学拉着你聚会,明天可能你身体不适一整天都看不进多少东西,大家有各自的情况,我反正这些事都赶上过不止一次,之后一般都选择每天把复习的量加大一点,争取能在几天之内把损失的时间补上。另外,我觉得复习计划也不宜定得太长、太详细,就像《每天爱你八小时》里梁朝伟说的:“我不能保证24小时之后的事。”每天早晨根据具体情况定好当天的计划就行了,第二天到了再说第二天的,如果你连今天的都没完成,那明天的计划提前定了也是白搭。但这并不表示一个长期的计划没有用,大家心里应该衡量好比如用大约多久看完这本书啦,用多久做完这本习题集啦,不然的话会在考试临近的时候发现好多最初计划要做的复习工作没时间做了。

具体到各科,对于公共课政治其实我是最头疼的(相信好多研友也是跟我同样的感觉),因为文科的东西重在积累,而这种需要记和背的活儿感觉总是很累人。我对付它的方法是“书读千遍,其意自现”,当然千遍是读不到,但那本“红宝书”我读了肯定有五遍,岳华亭的那本我也看了三遍。我一般选择做数学做的比较累了之后抱着政治参考书浏览,指望逐字逐句记住是不现实的,但把知识点理解了之后,能够用自己的话说出来还是不难的,前几遍可能看得比较慢,到后来大部分都熟了,只要在一些没掌握的地方留一下心就好了,今年的考题证明这种靠理解而不是靠背的方法还算是对路的。

公共课英语中我感觉阅读是最重要的(其实很显然,占分多嘛),而想要提高阅读水平的前提是单词量一定要过关,就是大纲里给的单词要无条件掌握,毕竟要读懂句子就要先认识单词才行。其实对于考研英语我没有太多的心得,只能给大家介绍一下我练模拟题用的书:一本是毕金献的模拟题,难度比较大,但认真做下来会感觉很有收获;张锦芯的那本难度没有前者大,但跟最后真题比较相似,推荐做模拟考试用。

关于数学专业课的复习,由于介绍多了大家也不一定感兴趣,毕竟都是考不同专业的,所以我只想跟大家分享一下对于理科类科目复习共同的心得,那就是——做题。所谓“重剑无锋,大巧不工”,“做题”真的是我认为取得考研成功的关键,甚至是唯一的道路。专业课本的书后习题一定要做,一方面,通过做题检验你是否真正掌握了知识,还能进一步加深对其的理解;另一方面,出题的老师往往是教过这门课的,那课本自然是出题的最大依据,课后习题一般都很具有代表性,完全可以变个样子甚至就原样出成考题,用来考察考生的知识掌握程度再合适不过了。跟课程相关的习题集也可以有选择性地做,不是要搞题海战术,而是作为对课本题目的补充,比如复习数学分析时就很有必要做做《吉米多维奇数学分析习题集》。另外,如果能够拿到往届的或正在上这门课的同学的平时作业习题,也很有参考价值的,因为对同一本书不同的老师侧重点也会有所不同,这可以从他平时给学生留作业的风格看出来,而这个老师出题的风格也许就会出现在你的专业课试卷上。

复习考研说起来往往是个很艰辛的过程,但当你身处其中时,并不一定只会觉得苦。有时会因为取得一点进步而欣喜,有时会面临困难而苦恼,其中的点点滴滴都是一种生活经历,从中学到的不只是知识,还有许多终生值得借鉴的经验,需要自己体会。

数学考研心得体会篇8

一、检查试卷,稳定心情

拿到试卷以后不要着急做题,花一两分钟时间把卷子通篇看一下,检查一下考研数学试卷是不是23道题目,大致都是什么题型的题目。这样做有两个好处:一是可以有效防止因粗心大意而漏掉一些题目,漏题就太可惜了;二是可以加强自己的信心,稳定心情,通过长达一年时间的复习,看了这么多参考书,听了那么多考研课程,相信试卷中肯定有不少题型你是非常熟悉的,看了这些题目以后,你会感到非常高兴,自信心倍增,原本紧张的心情也会放轻松,这样才能正常发挥。

二、按序做题,先易后难

考研数学题量都是23道题目,其中选择题8道,填空题6道,解答题9道。题目类型也是固定的,数学一和数学三1~4题是高数选择题,5~6题是线代选择题,7~8题是概率选择题;9~12题是高数填空题,13题是线代填空题,14题是概率填空题,15~19题是高数解答题,20~21题是线代解答题,22~23题是概率解答题。数学二1~6题是高数选择题,7~8题是线代选择题;9~13是高数填空题,14题是线代填空题,15~21题是高数解答题,22~23题线代解答题。

选择题和填空题主要考察的是基本概念、基本公式、基本定理和基本运算,解答题包括计算题和证明题考察内容比较综合,往往一个题目考查多个知识点,从近些年的试卷特点,题型都比较常见,难度不算大,我们最好按题目顺序做,这样能稳定心情,很快进入状态,也不容易漏做题目,如果遇到自己不熟悉的题目也不要发慌,可以暂时放下接着做下一个题目。等容易的题目有把握的题目都做完之后,再静心研究有疑问的题目,但如果实在没有思路也要学会放弃,留出时间检查自己会做的题目,争取会做的题目不丢分,因为数学的分数最依赖的还是能否将会做的题都做对。

此外,有些同学喜欢先做高数,再做线代,这样的做题顺序也可以,关键是看你平时训练时是如何训练的,选择适合自己的就是最好的,但在此提醒一下大家一定不要漏做题。

三、合理分配答题时间

根据以往考生的经验,一道客观题控制在3分钟左右,最多不要超过5分钟,解答题一般10分钟左右,根据难易程度适当调整。最后至少留出30分钟时间检查,确保会做的题目计算正确。

考研线性代数考点预测:向量的数学定义

首先回顾一下,在中学我们是如何表示向量的。中学数学中主要讨论平面上的向量。平面上的向量是可以平行移动的。两个相互平行且长度相等的向量我们认为是相等的。好,假设在平面直角坐标系中,对于平面上的任何一个向量,我们总是可以将其平移至起点坐标原点重合。这时向量终点的坐标同时也是向量的坐标。这样,我们就可以用一个实数对表示一个平面向量了。

一个实数对实际是我们线性代数中的一个二维行向量。而线代中讨论的向量是任意n维的。所以线性代数中的向量可视为中学向量的推广。

下面是向量的数学定义:

由n个实数a1,a2,…,an构成的有序实数组(a1,a2,…,an)称为一个n维行向量。类似可定义列向量。

问个问题:向量和矩阵是什么关系?向量可视为特殊的矩阵(行数或列数为1的矩阵)。这是理解向量的一个很好的角度。因为学习向量时,我们已把矩阵讨论得很清楚了,所以通过矩阵理解向量就能省不少事。

知道了什么是向量,那什么是向量组呢?向量一般来说不是单独出现,而是成组出现的。我们把多个向量放在一起考虑,就构成了向量组。

当然向量组的严格数学定义也不难理解:由若干个同型向量构成的集合称为一个向量组。这里的“同型”可以理解成矩阵同型,也可以用向量的语言描述成:同为行向量或列向量且维数相同。

数学考研心得体会优质8篇相关文章:

考研英语大作文5篇

留校考研的申请书5篇

对考研的调查报告6篇

考研减分申请书5篇

考研申请留校申请书5篇

考研英语大作文参考5篇

8年级数学工作总结优质8篇

数学读后感优质8篇

小学数学活动方案优质8篇

中班数学教案优质8篇

数学考研心得体会优质8篇
将本文的Word文档下载到电脑,方便收藏和打印
推荐度:
点击下载文档文档为doc格式
点击下载本文文档
161554